THE UTILIZATION OF MOLECULAR OXYGEN DURING THE BIOSYNTHESIS OF MADURAMICIN

Hwei-Ru Tsou[†], Srinivasan Rajan, Ted T. Chang^{††}, Ruth R. Fiala, Gerald W. Stockton and Milon W. Bullock

American Cyanamid Company, Agricultural Research Division, P.O. Box 400, Princeton, New Jersey 08540, U.S.A.

(Received for publication July 24, 1986)

Maduramicin sodium α (C₄₇H₇₈O₁₇Na) is a polyether ionophore antibiotic (Fig. 1) possessing a polyoxygenated carbon backbone and a 2,6-dideoxysugar^{1,2)}. It is a potent coccidiostat effective at a level of 5 ppm. We have established recently that the aglycone carbon skeleton of maduramicin is derived from eight acetate and seven propionate units and that the methoxy carbons are derived from methionine by feeding ¹³C labeled precursors to cultures of Actinomadura yumaensis³⁾. Also we have assigned unambiguously the ¹³C NMR spectrum of this antibiotic^{3,4)}. The bio-origin of oxygen atoms in maduramicin has been studied in our laboratory by incorporation of [1-13C, 18O2]acetate and [1-13C, 18O2]propionate in the fermentation cultures. It was concluded that five oxygen atoms O-(1), O-(6), O-(8), O-(9) and O-(14) are derived from acetate while three oxygen atoms O-(3), O-(4) and O-(7) originate from propionate. Based on these results, a biosynthetic scheme of maduramicin was proposed and it was postulated that at least three oxygen atoms O-(10), O-(11) and O-(13) in maduramicin were derived from molecular oxygen³⁾. In this report, incorporation of ¹⁸O₂ gas into maduramicin is described⁵⁾.

In the literature, biosynthesis in ¹⁸O₂ gas resulted usually in poor yields of antibiotics. In order to increase the fermentation yield and simplify the experimental procedure, we have designed a closed system shaker flask, wherein the liberated CO₂ gas is absorbed in KOH solution as it diffuses through a sterile porous plug. The oxygen gas is supplied continuously as needed from a rubber balloon or, preferably, through a low pressure regulator connected to a cylinder of oxygen gas under pressure. With this equipment, it is convenient to switch from ¹⁶O₂ gas to ¹⁸O₂ gas after the fermentation has proceeded to the stage where vegetative growth is near completion and meaningful antibiotic production begins. The concentration of the dissolved oxygen in the fermentation can be increased by pumping out some of the air with a hand pump and then by replacing with oxygen gas. The details of the design (the apparatus was custom-made by ACE Glass Incorporated, Vineland, New Jersey) are shown in Fig. 2.

The fermentation using ${}^{18}O_2$ gas was carried out as follows. Five milliliters of the inoculum were transferred through the side arm to a 500ml shaker flask containing 100 ml of the following medium (g/liter): glucose (30), soy flour (15), Mississippi lime CaCO₃ (1) and NaCl (2). Fifty milliliters of 30% KOH solution were added to the CO₂ gas trap. After half of the air inside

Fig. 1. The structure of maduramicin sodium α .

[†] Lederle Laboratories, American Cyanamid Company, Pearl River, New York 10965, U.S.A.

^{††} Stamford Research Laboratories, American Cyanamid Company, 1937 West Main Street, P. O. Box 60, Stamford, Connecticut, U.S.A.

Fig. 2. Schematic of apparatus for the production of maduramicin in ${}^{18}O_2$ gas.

(A) 500-ml filter flask with wide mouth, 100 ml of culture medium; (B) side arm with septum for the addition or withdrawal of samples; (C) sterile porous plug; (D) 250-ml CO_2 gas trap; (E) 50 ml of 30% KOH solution; (F) gas outlet for the removal of air; (G) low pressure regulator; (H) pressure gauge; (I) lecture bottle containing oxygen gas.

the fermentation flask and the gas trap was removed by a hand pump (Nalge Company, Rochester, New York), a stainless-steel lecture bottle filled with 18O2 gas was connected to the inlet of the gas trap through a pressure regulator (Model 3331, Matheson Gas Product, East Rutherford, New Jersey). The pressure of the regulator was set at 2.5-cm water drop below 1 atm. The fermentation was carried out in this closed system on a rotary shaker for 48 hours at 32°C with ¹⁶O₂ gas and then for further 120 hours under ${}^{18}O_2$ gas (95 atom % ${}^{18}O$, Isotec Incorporated, Centerville, Ohio) at 32°C. At all times, oxygen gas was replenished continously to maintain 2.5-cm water drop below 1 atm with an approximately 1:1 ratio of oxygen and nitrogen gases in the closed fermentation apparatus. The rate of 18O2 consumption was rapid (90 ml/hour) for the initial 9 hours and then remained steady at approximate 8 ml/hour. The antibiotic maduramicin was subsequently isolated by extraction of the whole mash with 300 ml of ethyl acetate after the addition of 0.8 g of sodium bicarbonate to yield 95 mg of crude product. Further purification by column chromatography on silica gel with methylene chloride - ethyl acetate (3:1), and recrystallization from ether - hexane afforded 28 mg of maduramicin sodium α , which was about one half of the yield of a normal run in open systems. Optimization of the fermentation yield in the presence of oxygen gas was not carried out. Although optimal dissolved oxygen tension for the biosynthesis of maduramicin has not been determined, we have established that fermentation yield of maduramicin in this closed system was decreased by one half when oxygen content in the gas phase was reduced from 50% to 20% at 1 atm.

An analysis of this ¹⁸O labeled maduramicin sample by fast atom bombardment mass spectrometry (FAB-MS)⁶⁾ showed that the protonated molecular ion (MH⁺) of the unlabeled maduramicin sodium α was shifted from m/z 939 to 949 as shown in Fig. 3. Similarly, two major fragment ions, m/z 895 (MH⁺-CO₂) and 877 (MH⁺ $-CO_2-H_2O$), also shifted 10 daltons to m/z 905 and 887, respectively, indicating the major enriched product molecules contained five ¹⁸O atoms. No detectable amount of the oxygen atoms in the CO_2 lost (O-(1) and O-(2)) or the $(CO_2 - H_2O)$ lost (O-(1), O-(2) and O-(3)) were ¹⁸O labeled. Using the high-resolution FAB peak matching technique, the MH+ ion of ¹⁸O labeled maduramicin, m/z 949, was determined as 949.5467, which further confirmed Fig. 3. Partial fast atom bombardment (FAB) mass spectra of unlabeled and ¹⁸O labeled maduramicin.

the presence of five ¹⁸O atoms in the structure. (Calculated value of $C_{47}H_{80}O_{12}^{18}O_5Na =$ 949.5502, deviation=3.7 ppm.) Twenty FAB-MS spectra were recorded and averaged under the same operational condition for each of the control sample and labeled sample. Using the fragment pattern around m/z 877 (MH⁺-CO₂-H₂O) of the unlabeled maduramicin, we have estimated that among the ¹⁸O labeled molecules, 77% of the molecules contain five ¹⁸O atoms, while 15% and 8% of the molecules contain four and six ¹⁸O atoms, respectively (Table 1). In the averaged FAB-MS spectrum of the ¹⁸O labeled maduramicin, comparison of the peak height of m/z 877 contributed from the unlabeled maduramicin and the portions of the peak heights of m/z 885, 887 and 889 contributed from the major fragment ions of ¹⁸O₄, ¹⁸O₅ and ¹⁸O₆ containing maduramicin, respectively, indicates that 77% of the product molecules are 18O labeled and 23 % contained no 18O label and were presumably produced before the introduction of ¹⁸O₂ gas. The ¹⁸O labeled maduramicin

permitted the determination of fragmentation pattern and the locations of the ¹⁸O atoms, which will be published separately⁷⁾.

The exact locations of the labeled ¹⁸O atoms in maduramicin were established by ¹³C NMR. The ¹⁸O labeled maduramicin sodium α (22.4 mg) was diluted with equal amount of unlabeled maduramicin sodium α in C₆D₆ in a 5-mm NMR tube, and the broad band proton decoupled ¹³C NMR spectrum was then recorded at 10°C on a Bruker CXP 300 spectrometer at 75.47 MHz. The spectrum (Fig. 4) showed distinct pairs of signals for C-17, C-20, C-21, C-29 and C-46, due to the presence of ¹³C¹⁸O resonances upfield by 0.020, 0.035, 0.028, 0.025 and 0.026 ppm, respectively, from the normal ¹³C¹⁶O resonances. The resonances for C-6, C-24 and C-25 were not resolved, however their half-height peak widths are about twice of those from the control sample (Table 2). Therefore, it is clear that O-(5), O-(10), O-(11) and O-(13) are ¹⁸O enriched. Also two peaks at 96.33 ppm separated by 0.019 ppm are assigned to C-38

	Total	Peak intensities contributed from maduramicin containing ^b			
m/z ^a	intensity	No ¹⁸ O label	¹⁸ O ₄	¹⁸ O ₅	¹⁸ O ₆
877	35.3	35.3			
883	10.7		4.2	4.3	
885	40.0		17.5	22.1	0.4
887	100.0	·	5.1	92.1	2.2
889	37.0	<u> </u>	1.0	26.1	9.4
891	10.5			5.0	2.7

Table 1. The relative contribution of peak intensities from ¹⁸O labeled maduramicin.

^a The major fragment ions (MH⁺-CO₂-H₂O) of the unlabeled maduramicin and ¹⁸O₄, ¹⁸O₅ and ¹⁸O₆ containing maduramicin occur at *m/z* 877, 885, 887 and 889, respectively.

^b The fragment patterns around $MH^+ - CO_2 - H_2O$ ions are estimated according to the fragment pattern around m/z 877 ($MH^+ - CO_2 - H_2O$) in the unlabeled maduramicin. In the unlabeled maduramicin, the relative peak intensities of m/z 873, 875, 877, 879 and 881 are 4.7, 24, 100, 29 and 5.4, respectively.

Fig. 4. Partial ¹³C NMR spectrum of maduramicin sodium α showing the signals of carbons bearing ¹⁶O. The broad band proton decoupled ¹³C NMR spectrum of a mixture (44.8 mg, 0.12 M) of 1:1 ratio of ¹⁶O labeled and unlabeled maduramicin in 0.4 ml of C₆D₆ was recorded at 10°C in a 5 mm-sample tube on a Bruker CXP 300 spectrometer at 75.47 MHz.

Table 2. The half-height peak widths.

Carbon	Chemical shift	Half-height peak width		
number	(ppm)ª	Control sample (Hz) ^b	Labeled sample (Hz)°	
6	82.53	3.2	6.0	
24	80.34	3.1	10.0	
25	73.29	3.4	5.6	
42	71.73	1.7	1.7	

^a Bruker CXP 300, 75.47 MHz; spectral width 7,936 Hz; 45° pulse; 2.1 s pulse delay; resolution enhanced by Lorentz-Gauss multiplication of FID prior to Fourier Tansformation with line broadening -2 Hz and gaussian broadening parameter 0.35; 18,000~24,000 transients; 64 K data points; 0.242 Hz/data point.

^b Unlabeled maduramicin (22.4 mg) was dissolved in 0.4 ml of C_6D_6 and the ¹³C-H NMR spectrum was recorded at 10°C.

• An equal amount of ¹⁸O labeled maduramicin (22.4 mg) and unlabeled maduramicin (22.4 mg) was dissolved in 0.4 ml of C_6D_6 and the ¹³C-H NMR spectrum was recorded at 10°C.

Scheme 1. Postulated mechanism for the biosynthesis of maduramicin.

Maduramicin

and could be attributed to the presence of ¹⁸O label in either O-(12) or O-(15). The fact that C-42 gives a sharp singlet and C-22 shows a shoulder with half-height peak width twice-wide as compared to the one in the control sample, indicates that O-(12) is enriched with ¹⁸O label instead of O-(15). In the small fraction of molecules that contain six ¹⁸O atoms, the extra ¹⁸O atom is believed to be distributed among the oxygen atoms of the aglycone and originated from normal glucose metabolism with ¹⁸O labeled acetate and propionate as well as some ¹⁸O labeled water. These low labeled precursors can then be incorporated into the antibiotic.

These data confirmed our previous prediction³⁾ that at least three oxygen atoms O-(10),

O-(11) and O-(13) were derived from molecular oxygen (Scheme 1). In addition, O-(5) and the glycosidic O-(12) were shown to be derived from oxygen gas. As expected, none of the oxygen atoms derived from acetate or propionate was enriched by 18O2 gas. This mechanism (Scheme 1) and the one for monensin^{8,9} support the generalized triene-triepoxide pathway for acetate-propionate-propionate-acetate (APPA) polyethers proposed by CANE et al.10) However, this is the first example to prove that the glycosidic oxygen, O-(12), comes from molecular oxygen. So far the origin of all the carbon and oxygen atoms in maduramicin has been determined except for those in the sugar backbone, which are neither enriched by acetate or propionate nor derived from molecular oxygen.

In the bacterial cell wall biosynthesis, D- and L-6-deoxypyranosides are derived from D-glucose through a common intermediate, i.e., nucleotidebound 4-keto-6-deoxy- α -D-glucose^{11,12}). It is also known that in bacterial cells 3,6-dideoxy-Lmannose is biosynthesized from D-glucose through cytidine diphosphate-D-glucose (CDP-D-glucose), CDP-4-keto-6-deoxy-D-glucose and CDP-3,6-dideoxy-L-mannose consecutively¹²⁾. It is conceivable that in the biosynthesis of maduramicin, D-glucose might be converted to nucleotide-bound 2,6-dideoxy- α -L-arabinopyranoside, which then proceeds through a transferase mechanism to form a glycoside of inverted configuration¹³⁾, *i.e.*, 2,6-dideoxy- β -L-arabinopyranoside. The anomeric center of this β -Lglycoside has the unusual chirality compared with β -D- and α -L-configurations from most of the polyether glycosides or macrolide glycosides^{10,13)} as predicted empirically by KLYNE's rule¹⁴⁾. According to this postulate that the carbohydrate moiety of maduramicin originates from D-glucose unit, none of the oxygen atoms in the carbohydrate should be labeled by ¹⁸O₂ gas, except the glycosidic oxygen, O-(12). Work is continuing to clarify the bio-origin of the carbohydrate moiety of maduramicin.

Acknowledgment

We like to express our thanks to Mr. E. ORLOSKI and Mr. R. WAYNE for making it possible for us to complete this work.

References

- LIU, C.-M.; T.E. HERMANN, A. DOWNEY, B. LA T. PROSSER, E. SCHILDKNECHT, N. J. PALLERONI, J. W. WESTLEY & P. A. MILLER: Novel polyether antibiotics X-14868A, B, C, and D produced by a Nocardia. J. Antibiotics 36: 343~350, 1983
- LABEDA, D. P.; J. H. MARTIN & J. J. GOODMAN (American Cyanamid): Process for producing antibiotic X-14868A. U. S. 4,407,946, Oct. 4, 1983
- 3) TSOU, H.-R.; S. RAJAN, R. FIALA, P.C. MOWERY, M. W. BULLOCK, D. B. BORDERS, J. C. JAMES, J. H. MARTIN & G. O. MORTON: Biosynthesis of the antibiotic maduramicin. Origin of the carbon and oxygen atoms as well as the ¹³C

NMR assignments. J. Antibiotics 37: 1651~ 1663, 1984

- 4) RAJAN, S.; H.-R. TSOU, P. C. MOWERY, M. W. BULLOCK & G. W. STOCKTON: Natural abundance two-dimensional double-quantum ¹³C NMR spectroscopy of maduramicin, a polyether ionophore antibiotic and coccidiostat. J. Antibiotics 37: 1495~1500, 1984
- 5) TSOU, H.-R.; R. FIALA, S. RAJAN, G. STOCKTON & M. BULLOCK: Biogenesis of the oxygen atoms in the antibiotic maduramicin. Abstracts of Papers of 189th Am. Chem. Soc. Meeting. No. AGFD 71, Florida, May 1, 1985
- BARBER, M.; R. S. BORDOLI, G. J. ELLIOTT, R. D. SEDGWICH & A. N. TYLER: Fast atom bombardment mass spectrometry. Anal. Chem. 54: 645A~657A, 1982
- CHANG, T. T.; M. SIEGEL & H.-R. TSOU: Determination of the sites of incorporation of labeled oxygen ¹⁸O atoms in maduramicin alpha by FAB mass spectrometry. Anal. Chem. Feb., 1987, in press
- CANE, D. E.; T.-C. LIANG & H. HASLER: Polyether biosynthesis. 2. Origin of the oxygen atoms of monensin A. J. Am. Chem. Soc. 104: 7274~7281, 1982
- AJAZ, A. A. & J. A. ROBINSON: The utilization of oxygen atoms from molecular oxygen during the biosynthesis of monensin A. J. Chem. Soc. Chem. Commun. 1983: 679~680, 1983
- 10) CANE, D. E.; W. D. CELMER & J. W. WESTLEY: Unified stereochemical model of polyether antibiotic structure and biogenesis. J. Am. Chem. Soc. 105: 3594~3600, 1983
- OKAZAKI, R.; T. OKAZAKI, J. L. STROMINGER & A. M. MICHELSON: Thymidine diphosphate 4-keto-6-deoxy-D-glucose, an intermediate in thymidine diphosphate L-rhamnose synthesis in *Escherichia coli* strains. J. Biol. Chem. 237: 3014~3026, 1962
- MATSUHASHI, S.: Biosynthesis of ascarylose (3,6-dideoxy-L-mannose) and paratose (3,6dideoxy-D-glucose) in Pasteurella Pseudotuberculosis. Fed. Proc. 23: 170, 1964
- CELMER, W. D.: Macrolide stereochemistry. II. Configurational assignments at certain centers in various macrolide antibiotics. J. Am. Chem. Soc. 87: 1799~1801, 1965
- KLYNE, W.: The configuration of the anomeric carbon atoms in some cardiac glycosides. Biochem. J. 47: xli-xlii, 1950